import os from pathlib import Path from models.generator import Generator from models.emoji_db import check_emoji, update_description from controllers.localfile_handles import get_emoji_count, yield_emoji_path from controllers.compress_image import compress_image from models.logger import setup_logger logger = setup_logger() root_folder = "D:\\Python\\mcunc\\EmojiTextGenerator\\" emoji_folder = "D:\\Python\\mcunc\\EmojiTextGenerator\\emojis\\" emoji = yield_emoji_path(emoji_folder) api_key = "sk-213f83213fce4e2ba41b8e67721f19cb" gen = Generator(api_key) emoji_file = next(emoji) emoji_uuid = '' p = Path(emoji_file) if p.suffix == ".jpg" or p.suffix == ".jpeg": emoji_uuid = p.stem # print(emoji_uuid) image = compress_image(emoji_file) image_path = Path(root_folder) / image print(image_path) if check_emoji(emoji_uuid): description = gen.process_single_image(str(image_path)) update_description(emoji_uuid, description) logger.info(f"图片 {emoji_file} 的描述词生成完毕, 其 description 为: {description}") else: logger.error(f"图片 {emoji_uuid} 不在数据库中!") # # 本地图像的绝对路径 # local_path = r"D:\Python\mcunc\EmojiTextGenerator\emojis\00e4f193-74af-40f7-8722-59d5a5931f92.jpg" # image_path = f"file://{local_path}" # messages = [ # {'role':'user', # 'content': [{'image': image_path}, # {'text': '使用简洁语言描述该表情包 ,例如 在吗 ,生气,?'}]}] # response = MultiModalConversation.call( # api_key="sk-213f83213fce4e2ba41b8e67721f19cb", # model='qwen3-vl-plus', # messages=messages) # # print(response.output.choices[0].message.content[0]["text"])